Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la...
Autor Principal: | Plazas Nossa, Leonardo |
---|---|
Formato: | doctoralThesis |
Publicado: |
Pontificia Universidad Javeriana
2017
|
Materias: | |
Acceso en línea: |
http://hdl.handle.net/10554/19580 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: |
El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la espectrometría UV-Vis. Los sensores UV-Vis tienen como propósito determinar la dinámica de las cargas de materia orgánica (Demanda Química de Oxigeno DQO y Demanda Bioquímica de Oxigeno DBO5), nitratos, nitritos y Sólidos Suspendidos Totales (SST). Adicionalmente a los métodos aplicados para la calibración de los sensores y el análisis las series de tiempo de los espectros de absorbancias UV-Vis, es necesario desarrollar métodos de pronóstico con el fin de ser utilizada en control de monitoreo en línea en tiempo real. La información proveniente de los datos recolectados puede ser utilizada para la toma de decisiones y en aplicaciones de control de tiempo real. Realizar pronósticos es importante en procesos de toma de decisiones. Por lo tanto, el objetivo de este trabajo de investigación fue desarrollar uno o varios métodos de pronóstico que puedan ser aplicados a series de tiempo de espectrometría UV-Vis para el monitoreo en línea de la calidad de agua en sistemas urbanos de saneamiento en operación. Cinco series de tiempo de absorbancia UV-Vis obtenidas en línea en diferentes sitios fueron utilizadas, con un total de 5705 espectros de absorbancia UV-Vis: cuatro sitios experimentales en Colombia (Planta de Tratamiento de Aguas Residuales (PTAR) El-Salitre, PTAR San Fernando, Estación Elevadora de Gibraltar y un Humedal Construido/Tanque de Almacenamiento) y un sitio en Austria (Graz-West R05 Catchment outlet). El proceso propuesto completo consta de etapas a ser aplicadas a las series de tiempo de absorbancia UV-Vis y son: (i) entradas, series de tiempo de absorbancia UV-Vis,(ii) pre-procesamiento de las series de tiempo, análisis de outliers, completar los valores ausentes y reducción de la dimensionalidad,y (iii) procedimientos de pronóstico y evaluación de los resultados. La metodología propuesta fue aplicada a la series de tiempo con diferentes características (absorbancia), esta consiste del enventaneo Winsorising como paso para la remoción de outliers y la aplicación de la transformada discreta de Fourier (DFT) para reemplazar valores ausentes. Los nuevos valores reemplazando o los outliers o los valores ausentes presentan la misma o al menos la misma forma de la serie de tiempo original, permitiendo una visión macro en la coherencia de la serie de tiempo. La reducción de la dimensionalidad en las series de tiempo de absorbancia multivariadas permite obtener menor número de variables a ser procesadas: el análisis por componentes principales (PCA) como transformación lineal captura más del 97% de la variabilidad en cada serie de tiempo (en un rango de una a seis, dependiendo del comportamiento de la series de tiempo absorbancia) y el proceso de Clustering (k-means) combinado con cadenas de Markov. Los procedimientos de pronóstico basados en señales periódicas como la DFT, Chebyshev, Legendre y Regresión Polinomial fueron aplicados y estos pueden capturar el comportamiento dinámico de las series de tiempo. Algunas técnicas de aprendizaje de máquina fueron probadas y fue posible capturar el comportamiento de las series de tiempo en la etapa de calibración, los valores de pronóstico pueden seguir el comportamiento general comparado con los valores observados (excepto ANFIS, GA y Filtro de Kalman). Por lo tanto, ANN y SVM tiene buen rendimiento de pronóstico para la primer parte del horizonte de pronóstico (2 horas). La evaluación de cada metodología de pronóstico fue realizada utilizando cuatro indicadores estadísticos tales como porcentaje absoluto de error (APE), incertidumbre extendida (EU), conjunto de valores dentro del intervalo de confianza (CI) y suma de valores de incertidumbre extendida más el conjunto de valores dentro del intervalo de confianza. El rendimiento de los indicadores provee información acerca de los resultados de pronóstico multivariado con el fin de estimar y evaluar los tiempos de pronóstico para cierta metodología de pronóstico y determinar cuál metodología de pronóstico es mejor adaptada a diferentes rangos de longitudes de onda (espectros de absorbancia) para cada serie de tiempo de absorbancia UV-Vis en cada sitio de estudio. Los resultados en la comparación de las diferentes metodologías de pronóstico, resaltan que no es posible obtener la mejor metodología de pronóstico, porque todas las metodologías de pronóstico propuestas podrían generar un amplio número de valores que permitirán complementar cada una con las otras para diferentes pasos de tiempo de pronóstico y en diferentes rangos del espectro (UV y/o Vis). Por lo tanto, es propuesto un sistema híbrido que es basado en siete metodologías de pronóstico. Así, los valores de los espectros de absorbancia pronosticados fueron transformados a los correspondientes indicadores de calidad de agua (WQI) para utilización en la práctica. Los resultados de pronóstico multivariado presentan valores bajos de APE comparados con los resultados de pronóstico univariado utilizando directamente los valores WQI observados. Estos resultados, probablemente, son obtenidos porque el pronóstico multivariado incluye la correlación presente en todo el rango de los espectros de absorbancia (se captura de forma completa o al menos gran parte de la variabilidad de las series de tiempo),una longitud de onda interfiere con otra u otras longitudes de onda. Finalmente, los resultados obtenidos para el humedal construido/tanque de almacenamiento presentan que es posible obtener apreciables resultados de pronóstico en términos de tiempos de detección para eventos de lluvia. Adicionalmente, la inclusión de variables como escorrentía (nivel de agua para este caso) mejora substancialmente los resultados de pronóstico de la calidad del agua. El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la espectrometría UV-Vis. Los sensores UV-Vis tienen como propósito determinar la dinámica de las cargas de materia orgánica (Demanda Química de Oxigeno DQO y Demanda Bioquímica de Oxigeno DBO5), nitratos, nitritos y Sólidos Suspendidos Totales (SST). Adicionalmente a los métodos aplicados para la calibración de los sensores y el análisis las series de tiempo de los espectros de absorbancias UV-Vis, es necesario desarrollar métodos de pronóstico con el fin de ser utilizada en control de monitoreo en línea en tiempo real. La información proveniente de los datos recolectados puede ser utilizada para la toma de decisiones y en aplicaciones de control de tiempo real. Realizar pronósticos es importante en procesos de toma de decisiones. Por lo tanto, el objetivo de este trabajo de investigación fue desarrollar uno o varios métodos de pronóstico que puedan ser aplicados a series de tiempo de espectrometría UV-Vis para el monitoreo en línea de la calidad de agua en sistemas urbanos de saneamiento en operación. Cinco series de tiempo de absorbancia UV-Vis obtenidas en línea en diferentes sitios fueron utilizadas, con un total de 5705 espectros de absorbancia UV-Vis: cuatro sitios experimentales en Colombia (Planta de Tratamiento de Aguas Residuales (PTAR) El-Salitre, PTAR San Fernando, Estación Elevadora de Gibraltar y un Humedal Construido/Tanque de Almacenamiento) y un sitio en Austria (Graz-West R05 Catchment outlet). El proceso propuesto completo consta de etapas a ser aplicadas a las series de tiempo de absorbancia UV-Vis y son: (i) entradas, series de tiempo de absorbancia UV-Vis,(ii) pre-procesamiento de las series de tiempo, análisis de outliers, completar los valores ausentes y reducción de la dimensionalidad,y (iii) procedimientos de pronóstico y evaluación de los resultados. La metodología propuesta fue aplicada a la series de tiempo con diferentes características (absorbancia), esta consiste del enventaneo Winsorising como paso para la remoción de outliers y la aplicación de la transformada discreta de Fourier (DFT) para reemplazar valores ausentes. Los nuevos valores reemplazando o los outliers o los valores ausentes presentan la misma o al menos la misma forma de la serie de tiempo original, permitiendo una visión macro en la coherencia de la serie de tiempo. La reducción de la dimensionalidad en las series de tiempo de absorbancia multivariadas permite obtener menor número de variables a ser procesadas: el análisis por componentes principales (PCA) como transformación lineal captura más del 97% de la variabilidad en cada serie de tiempo (en un rango de una a seis, dependiendo del comportamiento de la series de tiempo absorbancia) y el proceso de Clustering (k-means) combinado con cadenas de Markov. Los procedimientos de pronóstico basados en señales periódicas como la DFT, Chebyshev, Legendre y Regresión Polinomial fueron aplicados y estos pueden capturar el comportamiento dinámico de las series de tiempo. Algunas técnicas de aprendizaje de máquina fueron probadas y fue posible capturar el comportamiento de las series de tiempo en la etapa de calibración, los valores de pronóstico pueden seguir el comportamiento general comparado con los valores observados (excepto ANFIS, GA y Filtro de Kalman). Por lo tanto, ANN y SVM tiene buen rendimiento de pronóstico para la primer parte del horizonte de pronóstico (2 horas). La evaluación de cada metodología de pronóstico fue realizada utilizando cuatro indicadores estadísticos tales como porcentaje absoluto de error (APE), incertidumbre extendida (EU), conjunto de valores dentro del intervalo de confianza (CI) y suma de valores de incertidumbre extendida más el conjunto de valores dentro del intervalo de confianza. El rendimiento de los indicadores provee información acerca de los resultados de pronóstico multivariado con el fin de estimar y evaluar los tiempos de pronóstico para cierta metodología de pronóstico y determinar cuál metodología de pronóstico es mejor adaptada a diferentes rangos de longitudes de onda (espectros de absorbancia) para cada serie de tiempo de absorbancia UV-Vis en cada sitio de estudio. Los resultados en la comparación de las diferentes metodologías de pronóstico, resaltan que no es posible obtener la mejor metodología de pronóstico, porque todas las metodologías de pronóstico propuestas podrían generar un amplio número de valores que permitirán complementar cada una con las otras para diferentes pasos de tiempo de pronóstico y en diferentes rangos del espectro (UV y/o Vis). Por lo tanto, es propuesto un sistema híbrido que es basado en siete metodologías de pronóstico. Así, los valores de los espectros de absorbancia pronosticados fueron transformados a los correspondientes indicadores de calidad de agua (WQI) para utilización en la práctica. Los resultados de pronóstico multivariado presentan valores bajos de APE comparados con los resultados de pronóstico univariado utilizando directamente los valores WQI observados. Estos resultados, probablemente, son obtenidos porque el pronóstico multivariado incluye la correlación presente en todo el rango de los espectros de absorbancia (se captura de forma completa o al menos gran parte de la variabilidad de las series de tiempo),una longitud de onda interfiere con otra u otras longitudes de onda. Finalmente, los resultados obtenidos para el humedal construido/tanque de almacenamiento presentan que es posible obtener apreciables resultados de pronóstico en términos de tiempos de detección para eventos de lluvia. Adicionalmente, la inclusión de variables como escorrentía (nivel de agua para este caso) mejora substancialmente los resultados de pronóstico de la calidad del agua. |
---|