ANÁLISIS COMPARATIVO DE AJUSTE EN ENTRENAMIENTO DE REDES NEURONALES ARTIFICIALES A PARTIR DE LAS LIBRERÍAS OPEN NN Y ALGLIB

En las últimas décadas sonmuchos los avances que han tenido lugar en el desarrollo de aplicaciones y alcances de las redes neuronales artificiales, y de igual modo el desarrollo tecnológico en el área de la computación. Este tipo de avances han incidido directamente en el número de publicaciones de...

Descripción completa

Autor Principal: Muñoz, Erith
Otros Autores: Seijas, Cesar
Formato: Artículo
Idioma: spa
Publicado: 2017
Materias:
Acceso en línea: http://dspace.ups.edu.ec/handle/123456789/13838
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: En las últimas décadas sonmuchos los avances que han tenido lugar en el desarrollo de aplicaciones y alcances de las redes neuronales artificiales, y de igual modo el desarrollo tecnológico en el área de la computación. Este tipo de avances han incidido directamente en el número de publicaciones de aplicaciones, en diversas áreas del conocimiento, basadas en este método de inteligencia artificial. Ahora bien, hasta el presente sigue siendo tema de discusión la idoneidad y aplicabilidad de herramientas de software libre para facilitar la implementación y la calidad de resultados. En este contexto, este trabajo representa un análisis comparativo de aplicaciones usando las librerías ALGLIB y Open NN (Open Source Neural Networks C++ Library), orientadas al entrenamiento y reproducción de redes neuronales artificiales. De igual modo, se establece una evaluación de los resultados obtenidos a partir de los niveles de correlación entre la salida de valores para redes entrenadas y un conjunto de datos de entrenamiento simulados. // In the last decades, there have been a considerable amount of innovations in the development of applications and the scope of artificial neural networks, and likewise the technological development in computer science. These improvements have had a direct effect in the number of publications on applications, in diverse areas of knowledge, based on this artificial intelligence method. Until now, the adequacy and applicability of free software tools to facilitate the implementation and the quality of results is still under discussion. In this context, this work presents a comparative analysis of such applications using libraries ALGLIB and Open NN, oriented to training and reproduction of artificial neural networks. Also, we propose an evaluation of the results obtained from the levels of correlation between the output values for trained networks and a set of data for simulated training.