Polígono de Newton de una foliación de tipo curva generalizada

Generalized curve foliations are a type of foliations that have a similar reduction as the one given by curves. Camacho, Lins Neto, and Sad showed that generalized curve no-dicritical foliations have the same reduction of singularities than their separatrices. In this paper we give a novel proof of...

Descripción completa

Autor Principal: Fernández, Percy
Otros Autores: Saravia, Nancy
Formato: Artículo
Idioma: spa
Publicado: Pontificia Universidad Católica del Perú 2016
Materias:
Acceso en línea: http://revistas.pucp.edu.pe/index.php/promathematica/article/view/14995/15524
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: Generalized curve foliations are a type of foliations that have a similar reduction as the one given by curves. Camacho, Lins Neto, and Sad showed that generalized curve no-dicritical foliations have the same reduction of singularities than their separatrices. In this paper we give a novel proof of Dulac's theorem ([9]) using techniques of Rouille ([19]). This theorem shows that for generalized curve no-dicritical foliations their Newton polygons and their separatrices are equal. Using Dulac's theorem we return to a result (wrongly) stated by Loray, which is notquite right, as noticed by Fernandez, Mozo and, Neciosup.