Análisis de influencia bajo inferencia bayesiana en evaluaciones escolares de altas consecuencias
La presente investigación estudia una metodología para la detección de observaciones atípicas mediante un análisis de influencia bajo la perspectiva de la inferencia bayesiana. Se utiliza la medida de phi-divergencia y el estimador de Monte Carlo, derivado de ésta, trabajados previamente por Peng y...
Autor Principal: | Christiansen Trujillo, Andrés Guillermo |
---|---|
Formato: | Tesis de Maestría |
Idioma: | Español |
Publicado: |
Pontificia Universidad Católica del Perú
2018
|
Materias: | |
Acceso en línea: |
http://tesis.pucp.edu.pe/repositorio/handle/123456789/12356 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: |
La presente investigación estudia una metodología para la detección de observaciones atípicas mediante un análisis de influencia bajo la perspectiva de la inferencia bayesiana. Se utiliza la medida de phi-divergencia y el estimador de Monte Carlo, derivado de ésta, trabajados previamente por Peng y Dey (1995), para el cálculo de las divergencias Kullback-Leibler, distancia rectilínea y ji-cuadrado. Además, en el presente trabajo se busca realizar este análisis de influencia en evaluaciones de altas consecuencias (evaluaciones cuyos resultados tienen un alto impacto en la vida de los estudiantes o docentes). El estudio de simulación revela que es posible recuperar observaciones previamente distorsionadas como atípicas. Finalmente, se aplica la metodología a una evaluación realizada por el Ministerio de Educación. Esta aplicación revela que la metodología estudiada es capaz de identificar escuelas con resultados no esperados dadas sus condiciones y resultados anteriores. |
---|