Implementación de un esquema de alto orden compacto para hallar la solución de la ecuación del calor bidimensional

En el presente trabajo, el cual está basado en [7] y [8], analizamos dos métodos para construir esquemas de alto orden compactos para resolver la ecuación del calor bidimensional en un dominio espacial rectangular. También explicamos paso a paso la construcción de un método no eficiente y otro ef...

Descripción completa

Autor Principal: Pulliti Carrasco, Yelinna Beatriz
Formato: Tesis de Maestría
Idioma: Español
Publicado: Pontificia Universidad Católica del Perú 2018
Materias:
Acceso en línea: http://tesis.pucp.edu.pe/repositorio/handle/123456789/12591
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: En el presente trabajo, el cual está basado en [7] y [8], analizamos dos métodos para construir esquemas de alto orden compactos para resolver la ecuación del calor bidimensional en un dominio espacial rectangular. También explicamos paso a paso la construcción de un método no eficiente y otro eficiente (desde el punto de vista computacional) para calcular esquemas de alto orden compacto, partiendo desde los esquemas unidimensionales de alto orden hasta finalizar con el algoritmo respectivo en pseudocódigo, esto con el objetivo de resolver problemas de valor inicial y condiciones de frontera periódicas para la ecuación del calor bidimensional. Finalmente estudiamos las condiciones generales de estabilidad para el caso de condiciones de frontera no periódicas, cuyo análisis es omitido por [7] y [8]. Primeramente definimos h como el tamaño de paso para la discretización espacial, ¢t como el tamaño de paso para la discretización temporal, y N como la cantidad de operaciones que deben realizarse para hallar la solución numérica. El primer método presentado se considera ineficiente, a diferencia del segundo método que sí se considera eficiente, según el siguiente criterio: Un esquema numérico se considera eficiente si cumple las tres siguientes condiciones: estabilidad, orden de aproximación a la solución analítica mayor a O(h2), y complejidad computacional inferior a O(N3) para el caso unidimensional. Se prefieren los esquemas implícitos a los explícitos y asumir condiciones de frontera periódicas, dada la dificultad para hallar esquemas de alto orden compacto estables que consideren condiciones de frontera tanto periódicas como no periódicas. Finalmente por motivo de la complejidad computacional al hallar la solución numérica, se prefieren algoritmos optimizados en lugar de algoritmos iterativos con más de dos bucles anidados, ya que los métodos de diferencias finitas en general implican operaciones entre vectores y matrices, lo que suele incrementar la complejidad computacional de los algoritmos empleados en su implementación.