A large deviation principle for a natural sequence of point processes on a Riemannian two-dimensional manifold

We follow the techniques of Paul Dupuis, Vaios Laschos, and Kavita Ramanan in [8] to prove a large deviation principle for a sequence of point processes dened by Gibbs measures on a compact orientable two- dimensional Riemannian manifold. We see that the corresponding sequence of empirical measures...

Descripción completa

Autor Principal: García Zelada, David
Formato:
Idioma: spa
Publicado: Pontificia Universidad Católica del Perú 2018
Materias:
Acceso en línea: http://revistas.pucp.edu.pe/index.php/promathematica/article/view/20244
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: We follow the techniques of Paul Dupuis, Vaios Laschos, and Kavita Ramanan in [8] to prove a large deviation principle for a sequence of point processes dened by Gibbs measures on a compact orientable two- dimensional Riemannian manifold. We see that the corresponding sequence of empirical measures converges to the solution of a partial differential equation and, in some cases, to the volume form of a constant curvature metric.