A large deviation principle for a natural sequence of point processes on a Riemannian two-dimensional manifold
We follow the techniques of Paul Dupuis, Vaios Laschos, and Kavita Ramanan in [8] to prove a large deviation principle for a sequence of point processes dened by Gibbs measures on a compact orientable two- dimensional Riemannian manifold. We see that the corresponding sequence of empirical measures...
Autor Principal: | García Zelada, David |
---|---|
Formato: | |
Idioma: | spa |
Publicado: |
Pontificia Universidad Católica del Perú
2018
|
Materias: | |
Acceso en línea: |
http://revistas.pucp.edu.pe/index.php/promathematica/article/view/20244 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: |
We follow the techniques of Paul Dupuis, Vaios Laschos, and Kavita Ramanan in [8] to prove a large deviation principle for a sequence of point processes dened by Gibbs measures on a compact orientable two- dimensional Riemannian manifold. We see that the corresponding sequence of empirical measures converges to the solution of a partial differential equation and, in some cases, to the volume form of a constant curvature metric. |
---|