Controllability of linear systems on non-abelian compact lie groups

In this paper, we shall deal with a linear control system ∑ defined on a Lie group G with Lie algebra L(G). We prove that, if G is a compact connected Lie group, then the vector fields associated to dynamic of ∑ are conservative, and that if G is also non-Abelian then, by using Poincare Theorem, ∑ i...

Descripción completa

Autor Principal: Gül, Erdal
Formato: Artículo
Idioma: spa
Publicado: Pontificia Universidad Católica del Perú 2014
Materias:
Acceso en línea: http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8126/8418
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: In this paper, we shall deal with a linear control system ∑ defined on a Lie group G with Lie algebra L(G). We prove that, if G is a compact connected Lie group, then the vector fields associated to dynamic of ∑ are conservative, and that if G is also non-Abelian then, by using Poincare Theorem, ∑ is transitive if and only if it is controllable.