Problems in incompressible linear elasticity involving tangential and normal components of the displacement field
We consider the linear system -∆ u + grad p = f plus the divergence-free condition div u = O, in a bounded and conected but non simply connected open set Ω of R³, with a boundary ᴦ of C∞ class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω, we show well...
Autor Principal: | Leckar, Hamilton F. |
---|---|
Otros Autores: | Sampaio, Rubens |
Formato: | Artículo |
Idioma: | spa |
Publicado: |
Pontificia Universidad Católica del Perú
2014
|
Materias: | |
Acceso en línea: |
http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8131/8423 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: |
We consider the linear system -∆ u + grad p = f plus the divergence-free condition div u = O, in a bounded and conected but non simply connected open set Ω of R³, with a boundary ᴦ of C∞ class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω, we show well posedness for two boundary value problems involving normal or tangential components of the displacement field on ᴦ. |
---|