Problems in incompressible linear elasticity involving tangential and normal components of the displacement field

We consider the linear system -∆ u + grad p = f plus the divergence-free condition div u = O, in a bounded and conected but non simply connected open set Ω of R³, with a boundary ᴦ of C∞ class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω, we show well...

Descripción completa

Autor Principal: Leckar, Hamilton F.
Otros Autores: Sampaio, Rubens
Formato: Artículo
Idioma: spa
Publicado: Pontificia Universidad Católica del Perú 2014
Materias:
Acceso en línea: http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8131/8423
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: We consider the linear system -∆ u + grad p = f plus the divergence-free condition div u = O, in a bounded and conected but non simply connected open set Ω of R³, with a boundary ᴦ of C∞ class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω, we show well posedness for two boundary value problems involving normal or tangential components of the displacement field on ᴦ.