Poincaré duality in equivariant intersection theory

We study the Poincaré duality map from equivariant Chow cohomology to equivariant Chow groups in the case of torus actions on complete, possibly singular, varieties with isolated fixed points. Our main results yield criteria for the Poincaré duality map to become an isomorphism in this setting. The...

Descripción completa

Autor Principal: Gonzales Vilcarromero, Richard Paul
Formato: Artículo
Idioma: spa
Publicado: Pontificia Universidad Católica del Perú 2014
Materias:
Acceso en línea: http://revistas.pucp.edu.pe/index.php/promathematica/article/view/11235/11747
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: We study the Poincaré duality map from equivariant Chow cohomology to equivariant Chow groups in the case of torus actions on complete, possibly singular, varieties with isolated fixed points. Our main results yield criteria for the Poincaré duality map to become an isomorphism in this setting. The methods rely on the localization theorem for equivariant Chow cohomology and the notion of algebraic rational cell. We apply our results to complete spherical varieties and their generalizations.