Diseño e implementación de un módulo de reconocimiento de números manuscritos

Los sistemas de reconocimiento óptico de caracteres (OCR) constituyen un tema activo de investigación. El principal problema es el porcentaje de efectividad que se obtiene en el reconocimiento de caracteres manuscritos, esto es debido a la naturaleza de estos caracteres, la tipografía, la resolución...

Descripción completa

Autor Principal: Garrido Rojas, Eduart Rudolf
Formato: Tesis de Licenciatura
Idioma: Español
Publicado: Pontificia Universidad Católica del Perú 2011
Materias:
Acceso en línea: http://tesis.pucp.edu.pe/repositorio/handle/123456789/903
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: Los sistemas de reconocimiento óptico de caracteres (OCR) constituyen un tema activo de investigación. El principal problema es el porcentaje de efectividad que se obtiene en el reconocimiento de caracteres manuscritos, esto es debido a la naturaleza de estos caracteres, la tipografía, la resolución de la imagen, iluminación y otros factores. Los sistemas que reconocen números manuscritos tienen diversas aplicaciones (reconocimiento de cantidades numéricas sobre cheques bancarios, facturas, planillas de conteo de votos electorales, encuestas, etc.), para los cuales se necesita que la tasa de acierto al reconocer los números sea muy elevada (reconocimiento mayor 90% y error cercano 0%). Para lograr esto se implementó un módulo de reconocimiento basado en redes neuronales haciendo uso del toolbox de MATLAB. El módulo de reconocimiento tiene las siguientes etapas: una primera etapa es la segmentación que se encarga de separar la imagen de valor numérico en dígitos individuales, la segunda etapa se encarga de la normalización para obtener muestras parecidas paro lo cual se realiza corrección de la inclinación, espesor del trazo y tamaño, y una última etapa es la clasificación para lo cual se usó la red neuronal de topología “backpropagation”. Luego de las pruebas respectivas se obtuvo un reconocimiento de 95.9% con un porcentaje de error 0.8%, estas pruebas se realizaron con números de buena escritura. Se realizó otras pruebas con una base de datos de números manuscritos (MNIST, base de datos del National Institute of Standards and Technology) con la cual se obtuvo un reconocimiento del 90.11% y error 3.67%. Con esto se puede concluir que la metodología desarrollada es buena cuyas etapas se pueden optimizar para obtener mejores resultados.