Representación y clasificación de productos tensoriales torcidos
Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B. En primer lugar d...
Autor Principal: | Arce Flores, Jack Denne |
---|---|
Formato: | Tesis de Doctorado |
Idioma: | spa |
Publicado: |
Pontificia Universidad Católica del Perú
2018
|
Materias: | |
Acceso en línea: |
http://tesis.pucp.edu.pe/repositorio/handle/123456789/9949 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: |
Esta tesis estudia la clasificación de los productos tensoriales torcidos de dos álgebras asociativas con unidad A y B, es decir, las estructuras de álgebra que puede adoptar el producto tensorial de
espacios vectoriales subyacentes A B, compatibles con las estructuras de A y B.
En primer lugar desarrollamos la teoría básica que se encuentra dispersa en varios artículos
de investigación y establecemos como primer resultado propio, la dualidad que existe entre las
aplicaciones de torcimiento de un producto tensorial torcido y su álgebra opuesta. Este resultado
parece haber sido conocido entre los expertos del área sin embargo no se encuentra ninguna
prueba en la literatura. Luego estudiamos el caso en que uno de los factores del producto tensorial torcido tiene dimensión finita. Por ejemplo si A tiene dimensión finita, se establece que bajo estas condiciones definir una aplicación de torcimiento de A con B es equivalente a definir un par de representaciones matriciales (p , ph), una de B y otra de Aop. La primera tiene coeficientes en A y la segunda tiene coeficientes en Endk(B). Además, obtenemos una representación matricial el del producto tensorial torcidos en Mn(B). Estas representaciones constituyen el resultado principal propio en el segundo capítulo. Como aplicación describimos los productos tensoriales torcidos estudiados por Cibils, Jara et al. y Guccione et al. en términos del par de representaciones (p , ph) y deducimos las condiciones que permiten a los autores en cada uno de los casos lograr una clasificación (parcial o total). A continuación nos enfocamos en las aplicaciones de torcimiento de Kn con Km. Establecemos una caracterización de estas aplicaciones de torcimiento en términos de matrices con coeficientes en K, la cual se debe a que ambas álgebras son conmutativas y de dimensión finita. Tal caracterización nos permite clasificar completamente las aplicaciones de torcimiento de rango reducido 1 que en nuestro lenguaje se ve muy diferente de la clasificación alcanzada por Jara et al.. Luego desarrollamos herramientas para el estudio de dos familias de productos tensoriales torcidos: las estándar y las casi-estándar. Estas herramientas permiten estudiar la relación entre las aplicaciones de torcimiento estándar, y casi-estándar, con las álgebras de camino de Quivers, y establecen una generalización del resultado obtenido por Cibils para n = 2. Para analizar utilizamos todos de los resultados obtenidos para clasificar los productos tensoriales torcidos en el caso de dimensiones bajas, incluyendo todas las aplicaciones de torcimiento de K3 con K3. |
---|