Implementación de un sistema de información para el reconocimiento de caracteres basado en la red neuronal Perceptron

El presente proyecto tuvo como objetivo final construir un sistema basado en el funcionamiento de redes neuronales para el reconocimiento de caracteres dibujados a mano. El proyecto se divide en 2 fases. La primera fase es la de entrenamiento. En esta fase se entrena al sistema con el algoritmo resi...

Descripción completa

Autor Principal: Carranza Hernández, Sammy Nahín
Formato: Tesis de Licenciatura
Idioma: Español
Publicado: Pontificia Universidad Católica del Perú 2015
Materias:
Acceso en línea: http://tesis.pucp.edu.pe/repositorio/handle/123456789/5956
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: El presente proyecto tuvo como objetivo final construir un sistema basado en el funcionamiento de redes neuronales para el reconocimiento de caracteres dibujados a mano. El proyecto se divide en 2 fases. La primera fase es la de entrenamiento. En esta fase se entrena al sistema con el algoritmo resilient backpropagation. Para esto se trabaja con una data de entrenamiento, los cuales son una seguidilla de dibujos de caracteres hechos a mano. Al final de la fase de entrenamiento se obtiene los parámetros del sistema de red neuronal, con los cuales se podrá configurar el sistema de red neuronal. La siguiente fase es la fase de testeo. En esta fase se busca saber cuan efectivo ha sido el proceso de entrenamiento del sistema de red neuronal. Para esto, se pone a prueba el sistema ingresándole nueva data la cual nunca ha sido vista por el sistema. A esta data, se le llama data de testeo. Al final de esta fase se obtiene el grado de efectividad del sistema en reconocer acertadamente cada carácter ingresado al sistema.