Aplicación de una red neuronal feed-forward backpropagation para el diagnóstico de fallas mecánicas en motores de encendido provocado

En la presente investigación se explica la metodología para la creación de un sistema de diagnóstico aplicado a la detección de fallas mecánicas en vehículos con motores a gasolina mediante redes neuronales artificiales, el sistema se basa en el estudio de la fase de admisión del ciclo Otto, el cua...

Descripción completa

Autor Principal: Contreras Urgilés, Wilmer
Otros Autores: Maldonado Ortega, José, León Japa, Rogelio
Formato: Artículo
Idioma: spa
Publicado: 2019
Materias:
Acceso en línea: http://dspace.ups.edu.ec/handle/123456789/16736
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: En la presente investigación se explica la metodología para la creación de un sistema de diagnóstico aplicado a la detección de fallas mecánicas en vehículos con motores a gasolina mediante redes neuronales artificiales, el sistema se basa en el estudio de la fase de admisión del ciclo Otto, el cual es registrado a través de la implementación física de un sensor MAP (Manifold Absolute Pressure). Se emplea un estricto protocolo de muestreo y su correspondiente análisis estadístico. Los valores estadísticos de la señal del sensor MAP: área, energía, entropía, máximo, media, mínimo, potencia y RMS se seleccionaron en función al mayor aporte de información y diferencia significativa. Los datos se obtuvieron con la aplicación de 3 métodos estadísticos (ANOVA, matriz de correlación y Random Forest) para tener una base de datos que permita el entrenamiento de una red neuronal feedforward backpropagation, con la cual se obtiene un error de clasificación de 1.89e−11. La validación del sistema de diagnóstico se llevó a cabo mediante la provocación de fallas supervisadas en diferentes motores de encendido provocado.// This research explains the methodology for the creation of a diagnostic system applied to the detection of mechanical failures in vehicles with gasoline engines through artificial neural networks, the system is based on the study of the phase of Admission of the Otto cycle, which is recorded through the physical implementation of a MAP sensor (Manifold Absolute Pressure). A strict sampling protocol and its corresponding statistical analysis are applied. The statistical values of the MAP sensor signal as: area, energy, entropy, maximum, mean, minimum, power and RMS, were selected according to the greater input of information and significant difference. The data were obtained with the application of 3 statistical methods (ANOVA, correlation matrix and Random Forest) to obtain a database that allows the training of a neural network feed-forward backpropagation, with which you get an error of Classification of 1.89 e−11. The validation of the diagnostic system was carried out by the generating supervised failures in different engines with provoked ignition.