Análisis de la monotonicidad de la demanda vía relaciones de preferencia y funciones de utilidad

La teoría económica es un ambiente donde las matemáticas brindan muchos aportes para modelizar comportamientos de agentes económicos. En este contexto, la presente tesis enfatiza el despliegue matemático para tratar el problema del consumidor en una economía descrita por bienes de consumo. Estos...

Descripción completa

Autor Principal: Yarasca Moscol, Julio Eduardo
Formato: Tesis de Maestría
Idioma: Español
Publicado: Pontificia Universidad Católica del Perú 2019
Materias:
Acceso en línea: http://repositorio.pucp.edu.pe/index/handle/123456789/134998
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: La teoría económica es un ambiente donde las matemáticas brindan muchos aportes para modelizar comportamientos de agentes económicos. En este contexto, la presente tesis enfatiza el despliegue matemático para tratar el problema del consumidor en una economía descrita por bienes de consumo. Estos conforman canastas de consumo que son identi ficados con elementos de un cono convexo de un espacio vectorial apropiado como es el caso estándar de Rn, y por un sistema de precios, los cuales son identi ficados con vectores del cono dual topológico asociado al cono de las canastas de consumo. El problema del consumidor, es un modelo en el que un consumidor elige canastas de bienes (los cuales son accesibles para él considerando su restricción presupuestaria) de tal forma que maximice su satisfacción por el consumo de estas. El problema del consumidor se puede formular desde dos perspectivas distintas, ya sea mediante preferencias o mediante funciones de utilidad que representan la satisfacción del agente. En ambas formulaciones la solución al problema del consumidor es un conjunto de canastas de bienes dando lugar a una aplicación que asigna a cada vector de precios un conjunto de canastas (puede ser vacío, unitario o de varios elementos), a esta aplicación se le denomina correspondencia de demanda. En el presente trabajo se realiza una exposición pormenorizada de la monotonicidad de la correspondencia de demanda, vía preferencias y vía funciones de utilidad, tomando en cuenta condiciones de diferenciabilidad así como de no diferenciabilidad en lo que concierne a las funciones de utilidad. En algunos casos se debilita la clásica condición de concavidad para la función de utilidad. Asimismo, se evidencia el papel que juega la función de utilidad indirecta en el tratamiento de la monotonicidad de la función de demanda.