Estudio de la circunferencia desde la geometría sintética y la geometría analítica, mediado por el geogebra, con estudiantes de quinto grado de educación secundaria
La presente tesis tiene como objetivo analizar los resultados que se tiene en los aprendizajes al abordar un problema sobre circunferencia desde los cuadros de la geometría sintética y geometría analítica. Se espera que el tránsito entre estos dos cuadros favorezca la comprensión del objeto. Para...
Autor Principal: | Echevarría Anaya, Julio Antonio |
---|---|
Formato: | Tesis de Maestría |
Idioma: | Español |
Publicado: |
Pontificia Universidad Católica del Perú
2016
|
Materias: | |
Acceso en línea: |
http://tesis.pucp.edu.pe/repositorio/handle/123456789/6756 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: |
La presente tesis tiene como objetivo analizar los resultados que se tiene en los aprendizajes
al abordar un problema sobre circunferencia desde los cuadros de la geometría sintética y
geometría analítica. Se espera que el tránsito entre estos dos cuadros favorezca la
comprensión del objeto. Para el estudio se ha tomado como base la Teoria de Juego de
cuadros, en donde se describen fases por las cuales los estudiantes deben transitar para que
las interacciones entre cuadros permitan el progreso de los conocimientos. De otro lado,
como referencial metodológico se han considerado aspectos del Estudio de Casos.
Así, nos planteamos la siguiente pregunta de investigación: ¿Qué resultados se tendrá en los
aprendizajes de los estudiantes el abordar problemas sobre circunferencia desde la geometría
sintética y también desde la geometría analítica, y de qué manera el uso del GeoGebra
contribuirá a que los estudiantes establezcan conexiones entre estos dos cuadros de la
matemática?
Con esta investigación se logró identificar una actividad sobre circunferencia que podía ser
abordada desde la geometría sintética y también desde la geometría analítica. En cada uno de
dichos cuadros, se tendría que hacer uso de procedimientos propios particulares; así, mientras
que desde la geometría sin coordenadas prevalecerían las construcciones exactas, desde la
geometría analítica, la solución del problema se basaría en resolver sistemas de ecuaciones.
Así mismo, el empleo del software GeoGebra permitió que los estudiantes pudieran
comprobar los resultados obtenidos en ambos cuadros, logrando que se centraran en las ideas
centrales y no se perdieran con los cálculos.
De otro lado, también se confirmaron las fases propuestas en la teoría de juego de cuadros
durante el proceso de cambio de cuadros. Así, se produjeron desequilibrios al no tener la
seguridad de resolver un problema, y luego se recurrió a la ayuda de otro cuadro,
produciendose un reequilibrio de lo aprendido; dicha acción que realizan produce una
conexión entre cuadros llamado también juego de cuadros que le ayudan a tener seguridad en
resolver problemas de geometría.
Se puede concluir que esta investigación contribuyó a que los estudiantes establecieran
conexiones entre los cuadros de la geometría sintética y la geometría analítica. |
---|