Deducción de la ecuación de Korteweg-de Vries

Se presenta, con bastante detalle, una deducción de la ecuación de Korteweg-de Vries (KdV) utilizando para esto lo necesario de la teoría del flujo de fluidos incompresibles e irrotacionales y no viscosos. Se considera aquí, que el fluido es un medio continuo de modo que, al considerar un sistema y...

Descripción completa

Autor Principal: Rodríguez Fernández, Carlos
Formato: Artículo
Idioma: spa
Publicado: Pontificia Universidad Católica del Perú 2014
Materias:
Acceso en línea: http://revistas.pucp.edu.pe/index.php/promathematica/article/view/10265/10710
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: Se presenta, con bastante detalle, una deducción de la ecuación de Korteweg-de Vries (KdV) utilizando para esto lo necesario de la teoría del flujo de fluidos incompresibles e irrotacionales y no viscosos. Se considera aquí, que el fluido es un medio continuo de modo que, al considerar un sistema y un volumen de control, se pueden utilizar las herramientas del Cálculo Diferencial e Integral para estudiar sus propiedades.