Optimización de dividendos bajo una tasa estocástica y con cambio de régimen
En el presente trabajo, estudiaremos el problema de optimización de dividendos para una compañía de seguros cuya reserva de efectivo y la tasa de interés de descuento son modelados por procesos de difusión con los coeficientes de la tendencia y la volatilidad dependiendo del régimen económico ext...
Autor Principal: | Anco Blas, Edith Chavely |
---|---|
Formato: | Tesis de Maestría |
Idioma: | Español |
Publicado: |
Pontificia Universidad Católica del Perú
2018
|
Materias: | |
Acceso en línea: |
http://tesis.pucp.edu.pe/repositorio/handle/123456789/12914 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: |
En el presente trabajo, estudiaremos el problema de optimización de dividendos para
una compañía de seguros cuya reserva de efectivo y la tasa de interés de descuento
son modelados por procesos de difusión con los coeficientes de la tendencia y la volatilidad
dependiendo del régimen económico externo (condiciones macroeconómicas). Este
cambio de régimen está modelado por una cadena de Markov observable de estados finitos.
El objetivo es encontrar un esquema de distribución de dividendos que maximice
el valor esperado de los dividendos acumulados descontados hasta el tiempo de ruina.
Consideramos dos escenarios:
(I) Cuando el proceso de dividendos tiene una tasa y esta es uniformemente
acotada. En este caso, probaremos un Teorema de verificación que indica que la
soluci´on de la ecuación Hamilton-Jacobi-Bellman correspondiente coincide con
la función de valor asociada a nuestro problema y que bajo ciertas condiciones
una estrategia óptima existe. Además, encontraremos una forma explícita de una
estrategia óptima, en el caso de dos regímenes. Esta estrategia consiste en que la
compañía pagar´a dividendos con la tasa máxima siempre y cuando el proceso de
reservas después de pagar dividendos sea igual o mayor a algunos niveles críticos
(barreras) y no pagar nada cuando se encuentre por debajo de estas barreras.
(II) En general, cuando el proceso de dividendos es solo cadlag. En este caso,
obtenemos una cota superior para la función de valor asociada a nuestro problema.
Adema´s, a partir de los resultados obtenidos en la literatura existente en problemas
similares y de los resultados obtenidos en el presente trabajo conjeturamos
una posible forma de la estrategia óptima. |
---|