Indicadores líderes, redes neuronales y predicción de corto plazo

This paper shows a procedure to constmct a short run predictor for the GDP. We use theBaxter & King filter to decompose the monthly GDP on its three components: seasonal, business cycle and iong-run trend. Furthermore we estimate and forecast the businesscycle using a set of leading economic var...

Descripción completa

Autor Principal: Kapsoli Salinas, Javier
Otros Autores: Bencich Aguilar, Brigitt
Formato: Artículo
Idioma: spa
Publicado: Economía 2012
Materias:
Acceso en línea: http://revistas.pucp.edu.pe/index.php/economia/article/view/867/828
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: This paper shows a procedure to constmct a short run predictor for the GDP. We use theBaxter & King filter to decompose the monthly GDP on its three components: seasonal, business cycle and iong-run trend. Furthermore we estimate and forecast the businesscycle using a set of leading economic variables. We propose that the complicated relationshipsamong this variables and the business cycle are well captured by a non linearartificial neural network model. The other components are estimated using standardeconometric techniques. Finally, the three components are added to obtain an indicatorfor the future behavior of the GDP. The prediction shows an aceptable leve1 of reliability,so the index can be used to take decisions in the private or public sector. The mainadvantage of the index is its faster availability relative to the oficial statistics.