Modelo algorítmico para la clasificación de una hoja de planta en base a sus características de forma y textura

A lo largo de los años, las plantas han sido consideradas parte vital e indispensable del ecosistema, ya que están presentes en todos los lugares donde vivimos y también donde no lo hacemos. Su estudio es realizado por la ciencia de la botánica, la cual se encargar del estudio de la diversidad y est...

Descripción completa

Autor Principal: Malca Bulnes, Susana Milagros
Formato: Tesis de Licenciatura
Idioma: Español
Publicado: Pontificia Universidad Católica del Perú 2015
Materias:
Acceso en línea: http://tesis.pucp.edu.pe/repositorio/handle/123456789/6053
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: A lo largo de los años, las plantas han sido consideradas parte vital e indispensable del ecosistema, ya que están presentes en todos los lugares donde vivimos y también donde no lo hacemos. Su estudio es realizado por la ciencia de la botánica, la cual se encargar del estudio de la diversidad y estructura de las mismas. La disminución y extinción de la variedad de las plantas es un tema serio, por lo cual ante el descubrimiento de nuevas especies, se propone una rápida identificación y clasificación a fin de poder monitorearlas, protegerlas y usarlas en el futuro. El problema de la clasificación de hojas es una tarea que siempre ha estado presente en la labor diaria de los botánicos, debido al gran volumen de familias y clases que existen en el ecosistema y a las nuevas especies que van apareciendo. En las últimas décadas, se han desarrollado disciplinas que necesitan de esta tarea. Por ejemplo, en la realización de estudios de impacto ambiental y en el establecimiento de niveles de biodiversidad, es de gran importancia el inventariado de las especies encontradas. Por este motivo, el presente proyecto de fin de carrera pretende obtener un modelo algorítmico mediante la comparación de cuatro modelos de clasificación de Minería de Datos, J48 Árbol de Decisión, Red Neuronal, K-Vecino más cercano y Naive Bayes o Red Bayesiana, los cuales fueron adaptados y evaluados para obtener valores de precisión. Estos valores son necesarios para realizar la comparación de los modelos mediante el método de Área bajo la curva ROC (AUC), resultando la Red Bayesiana como el modelo más apto para solucionar el problema de la Clasificación de Hojas.