Extracción de descriptores de color y textura en imágenes digitales de plantas para la identificación de especímenes botánicos

La identificación de la clasificación taxonómica de las plantas es un proceso realizado generalmente de forma manual por los especialistas botánicos en base a su experiencia. Sin embargo, la enorme variedad de especies de plantas, y la dificultad en la selección de propiedades o cualidades propia...

Descripción completa

Autor Principal: Oncevay Marcos, Félix Arturo
Formato: Tesis de Licenciatura
Idioma: Español
Publicado: Pontificia Universidad Católica del Perú 2017
Materias:
Acceso en línea: http://tesis.pucp.edu.pe/repositorio/handle/123456789/7838
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Sumario: La identificación de la clasificación taxonómica de las plantas es un proceso realizado generalmente de forma manual por los especialistas botánicos en base a su experiencia. Sin embargo, la enorme variedad de especies de plantas, y la dificultad en la selección de propiedades o cualidades propias que permitan estimar una clasificación de las mismas, conforman un reto científico que se ha trasladado a un aspecto tecnológico para automatizar y apoyar dicho proceso. Por este motivo, se han propuesto diversos métodos desde los campos de reconocimiento de patrones y visión computacional para la identificación automática de las especies de plantas. Para esto, se suelen utilizar imágenes digitales de las hojas, debido a que esta es la parte de la planta que presenta una gran riqueza de atributos visuales como el color y la textura, que son objeto de esta investigación. En la investigación propuesta, se extraerán y combinaran diferentes grupos de descriptores de color y textura de las hojas en imágenes digitales escaneadas. Con dichos atributos, se entrenan algoritmos de aprendizaje de máquina para generar un modelo de clasificación que permita distinguir las especies de las plantas con una precisión aceptable según el estado del arte del problema. Para esto, se realizará un caso de estudio sobre el conjunto de imágenes de plantas: \ImageCLEF 2012", el cual posee un catálogo digital de hasta 115 especies botánicas diferentes.