Conocimiento didáctico matemático que deben manifestar profesores de secundaria en relación a tareas sobre ecuaciones
El presente trabajo de investigación tiene como objetivo identificar el conocimiento didáctico matemático que debe manifestar un profesor en la secundaria para reconocer la complejidad o la progresión de características algebraicas en tareas sobre ecuaciones que se presentan en textos escolares....
Autor Principal: | Pasapera Chuquiruna, Diana Teodora |
---|---|
Formato: | Tesis de Maestría |
Idioma: | Español |
Publicado: |
Pontificia Universidad Católica del Perú
2017
|
Materias: | |
Acceso en línea: |
http://tesis.pucp.edu.pe/repositorio/handle/123456789/9106 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: |
El presente trabajo de investigación tiene como objetivo identificar el conocimiento didáctico
matemático que debe manifestar un profesor en la secundaria para reconocer la complejidad o la
progresión de características algebraicas en tareas sobre ecuaciones que se presentan en textos escolares.
Para ello, señalaremos cuáles son los conocimientos matemáticos referidos a cada objeto primario
asociado a las ecuaciones de primer y segundo grado que emergen de las prácticas matemáticas, en una
propuesta para el significado institucional de referencia de las ecuaciones.
A partir de dicha propuesta y de las consignas que se describen para la faceta epistémica y ecológica
del Modelo del Conocimiento Didáctico Matemático propuesto por Godino (2009), hemos llegado a
determinar que un profesor debe ser capaz de identificar los conocimientos que se requieren para abordar
un contenido, así como los lenguajes, conceptos, tipos de situaciones, diferentes procedimientos y
propiedades que se ponen en juego para el estudio de las ecuaciones. También las conexiones de las
ecuaciones de primer y segundo grado con temas y tópicos más avanzados según el currículo nacional.
Además, debe identificar los conocimientos que marquen la evolución del razonamiento algebraico
elemental, tales como el reconocimiento de los procesos algebraicos de generalización, unitarización,
simbolización que son rasgos característicos de los niveles de algebrización (0, 1, 2 y 3) que se definen
desde el enfoque ontosemiótico de la cognición e instrucción matemática (EOS) para que genere o
modifique tareas en mejora de su práctica profesional.
Finalmente, en nuestras consideraciones finales, destacamos que con la identificación de estos
conocimientos y el insumo del significado institucional de referencia será posible dar cuentas en futuras
investigaciones de las ausencias, presencias, debilidades y fortalezas de nuestro diseño curricular; así
como de implementar una propuesta para formación de profesores. |
---|